
 ISSN: 2277-9655

[Kaur* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [611]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
COMPARATIVE ANALYSIS OF SOFTWARE DEVELOPMENT MODELS

Sandeep Kaur*

*Department of computer Science & Engineering, Guru Nanak Dev University Regional Campus,

Sathiala, India

DOI: 10.5281/zenodo.1036644

ABSTRACT
No geek is unfamiliar with the concept of software development life cycle (SDLC). This research deals with the

various SDLC models covering waterfall, spiral, and iterative, agile, V-shaped, prototype model. In the modern

era, all the software systems are fallible as they can’t stand with certainty. So, it is tried to compare all aspects of

the various models, their pros and cons so that it could be easy to choose a particular model at the time of need

KEYWORDS: Software development life cycle, development phases, waterfall model, spiral model, V-shaped

model, Prototype style, Iterative model, associate between models.

I. INTRODUCTION
[7] Software engineering is an application of systematic, disciplined, quantifiable approach to development,

operation and maintenance of software. It integrates significant mathematics, computer science as well as

practices whose origins are in engineering.[6] Software development process is also known as Software

development life cycle(SDLC) which is a structure that represents the various phases during the development of

the software product.

[1] Development model can be understood as a prescriptive as well as a descriptive model. Descriptive model as

it describes the history of how a particular software system was developed. It can be used as basis for

understanding & improving development process. Prescriptive model as it gives us prescription how a new

software system should be developed and used as a guideline to organize software development activities.

Prescriptive model dominates over descriptive one as prescriptive model is easier and common to use and also

one must have to collect the data throughout the life cycle of system in descriptive model.

Software projects are still vulnerable to unfamiliar problems that are large in size, complicated and are large in

size. So, there is a great need to make some kind of standard that defines all the tasks that are required to

develop & maintain software. We are having various models that uses different approaches.

II. PHASES
Lifecycle is a characteristic of how software should be developed. As it is known that software has to go

through various phases, so let them study in brief:

2.1 Planning: It is the first phase in which all the components to build the system are established and

all the requirements to be met are decided. It is deciding a plan for a solution.

2.2 Feasibility study: [9] it is assessment of the practicality of a proposed project. The two criteria to

judge feasibility are cost required and value to be attained.

2.3 Designing: it determines the framework of a system to meet the specific requirements. It produces

a specification for how each component is implemented.

2.4 Implementation: it is the coding phase in which program code is made in relevance to design. The

coding should be done using suitable language.[8] It implements the detailed design specification.

2.5 Testing: It is used to check out and correct the errors, if any found in the system. It is done to

check whether software meets the specified requirements.

2.6 Documentation: It is written text or illustration that accompanies software.[9] It either explains

how it operates or how to use it.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [612]

2.7 Maintenance: It is modification of software product after delivery to correct faults, to improve the

performance.

Figure 1: Phases of development life cycle

III. WATERFALL MODEL
[5] It is classical model of software engineering proposed by Royce . As, it emphasis planning in early stages, it

ensures design flaws before they develop.

IV. ORIGINAL WATERFALL MODEL
It serves as a baseline for many other models.[5] It comprises of various non-overlapping stages, from

establishing system & software requirements and continues with system design, detailed design, coding ,testing

& maintenance.

Table 1: Strengths & weaknesses of original waterfall model

Strengths Weaknesses

Minimizes planning overhead as it can be done at

initial stages.

Coming back to the back point is difficult.

Works well for technically weak & inexperienced

staff

The final phase produces non-

documentation that can be derivable.

Acts as a template into which methods for

analysis, design , code and test can be placed.

Small changes or errors may cause serious

problems.

Simple to use and understand. Software can’t be handled to clients until

final phase is completed.

Define-before-design & design-before-code. Idealized, not very much real.

Document driven. Difficult to integrate risk management.

Identifies deliverables & milestones. Difficult & expensive to swim upward.

s/w
develpment

life cycle

plannin
g

feasibilit
y study

designi
ng

implem
entatio

n
testing

docume
ntation

mainte
nance

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [613]

V. MODIFIED WATERFALL MODEL
[8] It uses the same phases as that of original but is not based on discontinuous basis. Using this, the phases can

be overlapped if needed.

Table 2. Strengths & weaknesses of modified waterfall model

Strengths Weaknesses

Implementation of easy areas don’t need to

wait for hard ones.

Unforeseen inter-dependencies can create

problems.

More flexible. Concurrency can’t be achieved.

VI. ITERATIVE MODEL
It is proposed to overcome to downfalls of waterfall model. [5]It don’t attempt to start with a full specification

of requirements. Instead, development begins by specifying & implementing just part of the software, which can

be reviewed in order to identify further requirements. This process is repeated, until all specifications are met.

Each sub-process is a mini-waterfall process that provide feedback to other phases.

Figure 2:Iterative Model [5]

Table 3:Strengths & Weaknesses of iterative model

Strengths Weaknesses

Better than waterfall model No clear milestones

Provides feedback Difficult to manage

Used when requirements are not well clear No stage is really finished.

Requirements

design &
implementation

testing Implementation

design &
implementation

testing implementation

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [614]

VII. PROTOTYPE MODEL
[6] It is the development approach of activities during software development, the creation of prototypes, i.e.,

incomplete versions of software program being developed. It don’t freeze the requirements before design or

coding. Prototypes are usually not complete systems. By using prototype, the client can get the actual feel of the

system.

When to use: When the desired system needs to have a lot of interaction with end users. Online systems, web

interfaces have a very high amount of interaction with end users. They are excellent to design good human

computer interface system.

Table 4: Strengths & Weaknesses of prototype model

Strengths Weaknesses

User involvement Unsuitable for large apps.

User get a better understanding as working model is

provided

May produce system inadequate for overall

organization needs

Error detection is easy

Missing functionality can be identifies easily

Possibility of causing systems to be left unfinished.

Quick user feedback Difficult to manage the project.

Cost effective Increase the complexity

VIII. SPIRAL MODEL
It was the first model to explain why the iteration matters.[6] It combines the elements of both design &

prototyping-in-stages, in order to combine advantages of top down and bottom up approaches. It moves in

clockwise direction beginning from center position and provide deliverable at each traversal.

When to use:For big and mission- critical projects where the cost of risk mgmt is not an issue.

Table 5: Strengths & Weaknesses of Spiral Model.

Strengths Weaknesses

Software is produced in early stages. Risk identification, assessment & mgmt is difficult.

More customer involvement. Cost & time estimations are also not easy.

Good for large & mission-critical projects. Not suitable for small small projects.

Better productivity through reuse capabilities. Risk analysis requires highly specific expertise.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [615]

Figure 3: spiral model

IX. V-SHAPED MODEL
It is quite similar to the waterfall model, as it is a sequential path of execution of processes , initializing with the

requirement phase. Each phase must be completed before the next phase begins. More emphasis is given to

testing phase. [6] The high level design phase focuses on system architecture & design. An integration test plan

is created in order to test the pieces of software systems ability to work together. The low level design phase is

where the actual software components are designed and unit tests are created. Once the coding is finished, the

path of execution continues up the right side of V where the test plans developed earlier are now put to use.

Table 6: Strengths & Weaknesses of V-Shaped Model

Strengths Weaknesses

Simple and easy to use Very rigid

Each phase has specific deliverables. Adjusting scope is expensive

Works well when requirements are clear No early prototypes are developed

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [616]

Table 7: Comparison Table

Features Waterfall

Model

Iterative

Model

Prototype

Model

Spiral

Model

V-Shaped

Model

Requirement

Specification

Beginning Beginning Changes Frequently Beginning Beginning

Understanding

Requirements

Well Understood Not well

understand

Not well understand Well

understand

Well

understood

Flexibility Rigid Less flexible Highly Flexible Flexible Rigid

Implementation

time

Long Less Less Project

Dependent

Long

Phase overlap No No Yes Yes No

Cost Low Low High Expensive Expensive

Complexity Simple Simple Complex Complex Simple

Reusability of

components

No Yes Yes Yes No

User

Involvement

Only at Beginning Intermediate High High Intermediate

Risk Analysis Only at beginning No Risk

Analysis

No Risk Analysis Yes Yes

Gurantee of

success

Less High Good High High

Plus points Minimizes

planning

overhead, simple

to use &

understand.

Better than

waterfall,

provides

feedback

Quick user

feedback, cost

effective, error

detection is easy.

Better

productivity,

More user

involvement.

easy to

understand,

each phase

provides

deliverables.

Downsides Freeze

requirement,

difficult to manage

risk.

No stage is

actually finished,

difficult to

manage.

Increased

complexity,

Difficult to manage.

Not suitable

for small

projects,risk

mgmt is

difficult.

Very rigid,

don’t provide

early

prototypes.

Suitable Technically weak

& inexperienced

staff

When user

requirements are

not clear.

For small

applications.

For big &

mission

critical

systems.

Small projects.

X. CONCLUSION

This paper presents various software development models. No doubt, there are numerous models, but only 5

have been discussed that are mostly used. It is tried to include all the strengths, weaknesses and their suitable

use. Every model tries to uplift the downsides of the previous model . Research on this topic will never end.

Now, it would be much easy to choose the best model as per the requirements

XI. REFERENCES
[1] Walt Scacchi, Institute for Software Research, University of California, Irvine: Process Models in

Software Engineering, research paper ,Feb 2001.

[2] Joruts LBwgret1:” Applying Design Methodology to Software Development”, research paper.

[3] Rupinder Kaur, Jyotsna Sengupta :A New Approach to Software Development Fusion Process Model

,J. Software Engineering & Applications, 2010, 3, 998-1004 doi:10.4236/jsea.2010.310117 Published

Online October 2010 (http://www.SciRP.org/journal/jsea).

[4] Jasmine K.S, Dr. R. Vasantha:” A New Process Model For Reuse Based Software Development

Approach“Proceedings of the World Congress on Engineering 2008 Vol IWCE 2008, July 2 - 4, 2008,

London, U.K.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Kaur* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [617]

[5] Vanshika Rastogi:”Software Development Life Cycle Models-Comparison, Consequences”, research

paper(IJCSIT) , 2015.

[6] Ms.shikha maheshwari, prof. Dinesh Ch.Jain:”A Comparative Analysis of different types of models in

software development life cycle”.research paper (www.ijarcsse.com) , May 2012.

[7] IanSommerville, SoftwareEngineering, Addison Wesley, 9th ed. ,2010.

[8] Nabil Mohammed Ai Munassar , A. Govardhan:”A Comparison between five models of software

engineering”, research paper(www.ijcsi.org), sept 2010.

[9] wikipidea.

CITE AN ARTICLE

Kaur, S. (2017). COMPARATIVE ANALYSIS OF SOFTWARE DEVELOPMENT

MODELS. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY, 6(10), 611-617.

http://www.ijesrt.com/

